
C++ Builder For Delphi Users
by Brian Long

C++ Builder is the third of four
similarly-named RAD tools

from Borland, each of which touts
three major technology attributes.
The products are, in release order:
➣ Borland AppBuilder (or Delphi

as it is known, since Borland
couldn’t shake the code name
off) which we all know and love;

➣ Borland IntraBuilder, a Java-
Script-based RAD tool offering
database-publishing facilities to
Web site developers;

➣ Borland C++Builder, a C++-
based RAD tool offering high
performance with an un-
matched degree of control (as
C++ is renowned for);

➣ Borland JBuilder, a Java 1.1
based RAD tool for developing
cross-platform Java applets,
often for use on Web sites.

This article attempts to show
Delphi users what to expect if you
buy C++ Builder, and how to tackle
some commonly used Delphi tech-
niques and constructs within a C++
dialect. This can’t be an all-encom-
passing C++ Builder tutorial (since
I don’t have the space), but it
should give you a feel for the levels
of similarity and difference.

Everything here is based on the
publicly available pre-release beta
version [available on our Collection
’96 CD-ROM amongst other places.
Editor]. The comments on Delphi 3
(aka Delphi97) are based on infor-
mation released publicly by
Borland. C++ Builder should be
shipping by the time you read this.

First Impressions
When you start C++ Builder you
could be forgiven for thinking
you’d started Delphi by mistake
(see Figure 1). This is particularly
true if you set your C++ Builder
shortcut up to use the -NS or /NS
command-line switch, which dis-
ables the splash screen. Until you
embark on a close examination of
the IDE, you will be hard pressed to
tell the difference between the two
products.

The environment is basically a
cross between Delphi 2 and 3 with
a little of Delphi 1. Clearly the com-
ponent palette looks just the same
as it does in Delphi 2. However,
most components have one or two
extra properties, as sported by
Delphi 3, such as ImeMode, for Win32
international language input sup-
port. But all of this notwithstand-
ing, the menu structure is rather
like that of Delphi 1, with an Options
menu giving access to project and
environment options. This is prob-
ably to make it more familiar to
users of Borland C++, which has an
Options menu.

The IDE is built from the same
source code base as Delphi’s, with
a few different files pulled in here
and there, so you can be confident
of feeling at home. At least until you
need to start writing code!

Hardware Requirements
Do not use C++ Builder on a skimpy
machine! It’s reasonably well
known that Delphi 2 developers are
advised to have a 24Mb Pentium at
their disposal for sensible develop-
ment. This will also be true for C++
Builder, although if you can get
more memory then do so.

The most important thing to re-
member is to have lots of disk
space available. C++ Builder is very
disk-hungry. The incremental
linker technology generates four
files per project which will con-
sume a lot of disk space as you
move from project to project. Even
on a fresh project they amount to
3.25Mb. Each time you modify the
project and re-compile, they stand
to increase in size. Also, there is a
debugging information file which
seems to have a minimum size of
768Kb.

But it’s not just the files in the
project directory that keep
chomping megabytes out of your
hard drive. In my LIB subdirectory
six files have been created over the
last few days, related to pre-com-
piled headers amongst other
things, which together take up just
under 19Mb.

Human Requirements
Patience. One of the many reasons
Pascal was chosen as the language
for Delphi was because it is so
quick at compiling when compared
to other well-known languages,
such as C++. The first time you
compile a C++ Builder project you

➤ Figure 1: Deja vu?

8 The Delphi Magazine Issue 19



#include <vcl\vcl.h>
#pragma hdrstop
//———————————————————————————-————
USEFORM(“Unit1.cpp”, Form1);
USERES(“Project1.res”);
//———————————————————————————————-
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
{
  try
  {
    Application->Initialize();
    Application->CreateForm(__classid(TForm1), &Form1);
    Application->Run();
  }
  catch (Exception &exception)
  {
    Application->ShowException(&exception);
  }
  return 0;
}

➤ Listing 1

can go and make some coffee. The
pre-release version of the product
I am using for this overview took
40.8 seconds to make a fresh empty
project the first time. However C++
Builder implements an incremental
linker to help expedite all but the
first build. Having made a few
changes to my fresh project, the
next make took only 4.3 seconds. If
you concentrate on developing one
application at a time in C++ Builder,
the incremental linker will keep the
compile times down to a more
manageable level.

Above all, you need to remember
to avoid rebuilding the project
(Project | Build All) as this takes
much longer than is really bear-
able: all the referenced C++ header
files are re-compiled and the incre-
mental linker storage buffers are
ignored. Generally, you should just
make the project (Project | Make or
Ctrl-F9) or run it (which invokes
the make process), which will take
most headers from the pre-com-
piled header caches that are stored
here and there. My simple project
mentioned above took 69.9 sec-
onds to rebuild, just after the 4.3
second make process.

Project Overview
C++ Builder is a C++ product de-
signed to support the RAD process
and let C++ developers get access
to the well established Visual Com-
ponent Library (VCL). In order for
the C++ Builder component library
to be an accurate facsimile of the
Delphi VCL, the source files which
implement C++ Builder’s compo-
nents are all written in Delphi Pas-
cal. No translation has been made,
which should make it easy for C++
Builder to keep up with Delphi VCL
developments.

C++ Builder comes with two IDE
compilers for automatically com-
piling either C++ or Pascal source
modules. This means that if you
have a team developing a project
then some can develop code in
Pascal using Delphi and some can
develop in C++ using C++ Builder. It
also means that C++ Builder users
can take advantage of the wealth of
Delphi source code available.

C++ Builder cannot manufacture
Pascal files, but you can add

existing Pascal files into your C++
Builder projects.

The main project source file
itself is always a C++ file (see List-
ing 1): there is no getting away from
that. If you examine Listing 1 you
can immediately see differences
and similarities to what you are fa-
miliar with in Delphi.

When you open a C++ Builder
project, you do not have to pick the
project source file name, as you do
in Delphi. All C++ source files have
a .CPP extension and so it isn’t al-
ways easy to spot which file repre-
sents the project. Normally, you
pick the project makefile, which
has a .MAK extension. A makefile is
a historical text file which can be
processed by a command-line tool
called MAKE.EXE. It contains vari-
ous options, rules and depend-
encies which make sure the most
up to date version of the target file
can be generated with least effort
by the other command-line tools.
The .MAK file can still be used on
the command-line, but most users
will be happy to let the IDE
interpret it.

To give you an idea of a project’s
structure and layout, Tables 1 and
2, C++ Builder Project Files and
Delphi Project Files, list all the files
which might get manufactured for
a given project in C++ Builder and
Delphi (the tables are at the end of
the article, pages 18 and 19). They
also highlight those which should
be archived and, by implication,
those which can safely be deleted.

The list shows that C++ Builder
stores form code in two files, a .CPP
file (source file) and a .H file
(header file). In fact this is the same

for any unit: it is split into two files.
The .H file can be considered to be
much the same as the interface
section of a Pascal unit and the
.CPP file the same as the implemen-
tation section. For one source
module to refer to items in another
source module, it (or its header)
must include the other module’s
header file. This is achieved with a
#include directive and is analogous
to adding a unit name into the uses
clause of the implementation or
interface section in Delphi. This
process can be slightly automated
by using File | Include Unit
Hdr... (or Alt-F11).

To access various C and C++ RTL
routines you will need to include
various headers from the large
collection supplied in the INCLUDE
directory hierarchy.

User Interface Designing
The general operation of visually
designing an application is almost
identical between Delphi and C++
Builder. There are some different
menu captions in places and one or
two extra menu items, but little else
that is noteworthy. One nice thing
is the addition of more keystroke
shortcuts for various menu items.
For example:
➣ Project | Add To Project...

is Shift-F11
➣ File | Open Project...

is Ctrl-F11
➣ View | Call Stack is Ctrl-F3
➣ Project | Options...

is Shift-Ctrl-F11.
Also, View | CPU (which is available
in Delphi 2 if you set up an undocu-
mented Registry entry) is Alt-F2.
Lastly, the equivalent of Delphi’s

10 The Delphi Magazine Issue 19



File | Use Unit... in C++ Builder
is File | Include Unit Hdr... and
that has a shortcut of Alt-F11.

Object Inspector
One example of syntax difference
you will soon encounter is shown
in Listing 1. To access a property
or method of any VCL object you
must resist the temptation to use
dot notation. Delphi users use a dot
because Delphi hides the fact that
objects are implemented via point-
ers. This is not hidden in C++ and
so you must use the appropriate
operator: the arrow or crow’s foot
or points-to operator: a hyphen fol-
lowed by a greater than symbol
(->). If you use File | Include Unit
Hdr... (Alt-F11) to reference an-
other form’s components, the
Object Inspector reminds you of
this syntax if it ever shows you a
component from another form, as
shown in Figure 2.

Event Handlers
These are manufactured in exactly
the same way as in Delphi and a
couple of examples are shown in
Listing 2. There may be a good ar-
gument for not bothering with a
form’s OnCreate handler in C++
Builder, since you will always find
the form constructor sitting in the
form unit, waiting to be used. This
is also shown in Listing 2, at the
top.

Notice the repeated use of the
__fastcall modifier. This is the
same as Delphi’s register keyword
and implements the same calling
convention as 32-bit Delphi de-
faults to. If you ever set up event
handlers by hand, do not forget to
use this modifier.

Also notice that the standard
Sender parameter, as taken by prac-
tically all event handlers, is explic-
itly declared to be a pointer to a
TObject by way of an asterisk (*).
This is emphasising that VCL ob-
jects are really pointers to objects,
despite what the Delphi syntax
might suggest. In C++ Builder, VCL
objects must be declared as point-
ers since they must live on the
heap. You cannot declare a VCL
object without the pointer syntax.
This implies that stack-based VCL
objects are not allowed.

Notice in the OnCloseQuery event
handler in Listing 2, one of the pa-
rameters, CanClose, is declared
with an ampersand (&). This is C++
syntax for a pass by reference pa-
rameter: like a Delphi var parame-
ter. The event handler can write a
value to the parameter and the
code that called the event handler
will see the new value.

General Language Differences
Some of the syntax problems you
encounter with C++ Builder will
simply be due to the C++ language.
However, a lot of the code you
write will basically be Delphi code
with appropriate tweaks to make
C++ Builder happy (in other words,
C++ syntax is not a million miles
away from Pascal). Some impor-
tant points to remember are:
➣ C++ is a case-sensitive language:

you must type things in the
right case or you will get com-
piler errors!

➣ Strings are delimited by double
quotes.

➣ The assignment operator is a
single equals sign (=) instead of
colon equals (:=) and the equal-
ity operator is a double equals
(==) instead of a single equals.

➣ The semicolon (;) is used as a
statement terminator in C++,
whereas Pascal uses it as a
statement separator.

➣ Compound statements are sig-
nified with a pair of braces
(curly brackets: {}) instead of
begin and end. This is a bit
confusing as Delphi uses these
characters for comment
notation.

➣ When a parameter-less function
is called, a pair of empty paren-
theses ( ) must be supplied.
Delphi 1 insists on no brackets
being used, Delphi 2 allows
empty brackets.

➣ Comments can be started with
/* and terminated with */, or a
single-line comment can be
started with // (as in Delphi 2).

Variables And Objects
All of the pre-defined Delphi data
types are defined for use in C++
Builder in the SYSDEFS.H header
file, so you don’t necessarily have
to rush into learning all the C++
native types. The syntax of a vari-
able declaration is (in Delphi
terms) back to front, with the type
specified first before the list of vari-
able names. However, a nice fea-
ture of C++ means that you can
initialise variables in declarations
(both global and local) and you can
also insert variable declarations
almost anywhere in a subroutine.

Certain Delphi-specific types
such as Pascal strings and sets are
implemented as classes. I’ll look
at these more closely later. Listing
3 shows a few variables being
declared and used.

When you need to dynamically
create VCL objects in C++ Builder,
you do as shown for a form object
in Listing 4. This includes the dec-
laration of a VCL object pointer (or
object reference as it would be
called in Delphi) and simultaneous
construction using the new opera-
tor. Objects are destroyed not by
calling Free(), but using the delete
operator, for C++ conformance.

__fastcall TForm1::TForm1(TComponent* Owner)
  : TForm(Owner)
{
  // This is the form constructor
}
void __fastcall TForm1::Button1Click(TObject *Sender)
{
}
void __fastcall TForm1::FormCloseQuery(TObject *Sender, Boolean &CanClose)
{
}

➤ Listing 2

➤ Figure 2

12 The Delphi Magazine Issue 19



If Statements
The condition used in an if state-
ment must be enclosed in paren-
theses. Listing 5 shows a couple of
conditional expressions which put
a message on the caption bar indi-
cating which quadrant of the form
the mouse is over.

Note the use of the += operator.
There are many such operators
available in C++. X += 5 is the same
as X = X + 5 and X++ is the same as
X = X + 1. That particular operator
(++) is where the name C++ came
from: it was supposed to be one
step ahead of C.

You have to be a bit careful with
the expressions you write within
these brackets since C++ operator
precedence is a little different to
that in Delphi (search for prece-
dence in the two environments’
Help systems for a comparison).
You will find that the equality op-
erator (==) takes precedence over
the Boolean And (&&) and Or (||)
operators, the opposite to how it is
in Delphi.

Case Statements
Pascal case statements must be re-
placed by switch statements (see
Listing 6). The expression you are
checking the value of must again be
enclosed in brackets. Each individ-
ual value is listed after the reserved
word case and followed by a colon
and the statement to execute. If
you want multiple statements to
execute for any case, you must en-
close them within braces (just like
a Pascal compound statement
needs a begin and end).

If you need the same actions per-
formed for many values, you can
list one case after another, as is
done for mrNo and mrAbort in the
listing. Notice that you need to use
break to stop execution going onto
the next case statement. In C++, the
case values are used to indicate
where to start execution, not to
indicate which section to solely
execute.

As in Pascal, the default section,
which executes if no other values
match, is optional.

String Operations
In Delphi 2, the native string type is
called AnsiString, but you can (and

probably do) also use the String
identifier. Strings are automatically
dynamically memory-managed by
RTL code, contrary to how strings
work in C++. The native C/C++
string type is implemented as a
char *, a pointer type which Delphi
defines as a PChar. C++ also offers a
string class, but it is not compat-
ible with the Pascal string type.

So, C++ Builder implements a
new string class called AnsiString,
defined in the DSTRING.H header
file. There is also a type called
String in SYSDEFS.H, defined to be
the same as AnsiString. Also, to
support old-style Delphi 1 small
strings, there is a template class
called SmallString and a Short-
String type (the same identifier as

in Delphi), defined via the Small-
String type.

Incidentally, if you do not know
what a template class is, don’t
worry: the details are not impor-
tant and I won’t cover them here.

One useful side effect of strings
being implemented as classes is
that all strings which are declared
without initial values will start off
as empty strings. In Delphi, the
initial value is undefined.

Another benefit is that we have
many constructors supplied. When
a String parameter is required we
are able to pass an Integer, a
Double, a null-terminated C string,
another String or a null terminated
wide string (designed to support
Unicode). This means that we can

void __fastcall TForm1::About1Click(TObject *Sender)
{
  TAboutBox *AboutBox = new TAboutBox(Application);
  AboutBox->ShowModal();
  delete AboutBox;
}

➤ Listing 4

void __fastcall TForm1::Button1Click(TObject *Sender)
{
   ShowMessage(“In Button1’s OnClick handler”);
   Integer Count, Result = 10;
   String S = “Variables declared after a code statement”;
   ShowMessage(S);
}

➤ Listing 3

void __fastcall TForm1::Button1Click(TObject *Sender)
{
  TForm2 *Form2 = new TForm2(Application);
  switch (Form2->ShowModal())
  {
    case mrOk: {
      Caption = “Okay”;
      Color = clBlue;
    } break;
    case mrNo:
    case mrAbort: Caption = “No or Abort”; break;
    default: Caption = “Some other caption”;
  }
  delete Form2;
}

➤ Listing 6

void __fastcall TForm1::FormMouseMove(TObject *Sender,
  TShiftState Shift, int X, int Y)
{
  String S;
  if (Y > ClientHeight / 2)
    S = “Bottom ”;
  else
    S = “Top ”;
  if (X > ClientWidth / 2)
    S += “right”;
  else
    S += “left”;
  Caption = S + “ quadrant”;
}

➤ Listing 5

14 The Delphi Magazine Issue 19



call ShowMessage with a parameter
of 12. 12 will be passed to the String
constructor and the resultant
string is passed to ShowMessage.

Because strings are imple-
mented as classes, normal string
routines like Pos and Insert are im-
plemented as member functions
(or methods) of the relevant
classes. To get a native C string
from a String object, use the
c_str() member function. Listing 7
shows some examples of simple
string manipulation.

Set Operations
C++ has no concept of sets and so
the basic Set type is again imple-
mented as a template class. All the
various other set types are defined
in terms of the Set class and the
enumerated type which can go in
the set. In Delphi you can create a
set on the fly using a pair of square
brackets and the appropriate
values from the enumerated type.

Unfortunately it is rather more
involved in C++ due to the class
implementation of sets: you need
to know the set type name. Listing
8 shows a Pascal call to MessageDlg
and the equivalent C++ call. Notice
that the TMessageDlgButtons class
name is used to create a local set
object. The << operator is used to
include as many elements in the set
as are required.

The Set class also defines all the
other set operators, eg union (+),
intersection (*) and difference (-).

Listing 9 shows an event handler
which takes a set as a parameter
(Shift). It allows you to Ctrl-drag
from an edit control by checking if
ssCtrl is in the set. To manipulate
the set there are a variety of meth-
ods and operators defined, such as
Contains (used in the listing).

Creating A New Set Type
Listing 10 shows how to use the Set
template class to make a new set

type. Notice that you specify the
enumerated set type along with the
lowest and highest enum value that
can go in the set between angled
brackets.

Open Arrays
Delphi doesn’t support user de-
fined routines which take an arbi-
trary number of parameters, but C
and C++ do. To get over this, Delphi
implements open arrays and since
the C++ Builder VCL is written in
Delphi, C++ must be made to
support Delphi open arrays.

There are two types of open
arrays. Firstly, there are those
declared as, for example, array of
Integer, which take an arbitrary
number of values of a fixed type.
The Polygon method of TCanvas
takes an array of TPoints. The other
type is declared as array of const
and can take an arbitrary number
of values of almost any type. The
Format function and the FindNearest
method of TTable both take these.
Internally, array of const gets
converted into array of TVarRec.

Listing 11 shows a Delphi event
handler and the C++ Builder
equivalent is in Listing 12. Three
macros have been implemented to
support open arrays: it is impor-
tant to use EXISTINGARRAY if you are
using an array which already exists
in a variable. The macros are
shorthand ways of manipulating in-
stances of another couple of new
classes: OpenArray and OpenArray-
Count. Because of the implementa-
tion of class OpenArray, the word
arbitrary as used in the previous
paragraph should be changed to up
to 19. The ARRAYOFCONST() macro is
a shorthand way of referring to
OPENARRAY(TVarRec, ()) although
you do need to specify an extra pair
of brackets before it’ll compile.

Exception Handling
Delphi’s try..except..end blocks
change to C++’s native try..catch
blocks. Apart from that exception
handling is much the same, except
that C++ can raise or throw things
other than exception objects. For
example, you can throw an Integer,
which of course is less meaningful.
See Listing 13 for an example
exception handler which traps

MessageDlg(’Hello from Delphi’, mtInformation, [mbOK, mbCancel], 0);

MessageDlg(“Hello from C++ Builder”, mtInformation,
  TMsgDlgButtons() << mbOK << mbCancel, 0);

➤ Listing 8

void __fastcall TForm1::Edit1MouseDown(TObject *Sender, TMouseButton Button,
  TShiftState Shift, int X, int Y)
{
  if (Shift.Contains(ssCtrl))
    Edit1->BeginDrag(False);
}

➤ Listing 9

void __fastcall TForm1::Button1Click(TObject *Sender)
{
  String S = “Hello world”;
  S.Delete(1, 5);
  S.Insert(“Goodbye cruel”, 1);
  if (S.Pos(“cruel”) != 0) // != matches the Delphi <> operator
    Caption = S;  // Displays “Goodbye cruel world”
}

➤ Listing 7

void __fastcall TForm1::Button1Click(TObject *Sender)
{
  enum TDayOfWeek {dwMon, dwTue, dwWed, dwThu, dwFri, dwSat, dwSun};
  typedef Set<TDayOfWeek, dwMon, dwSun> TDaysOfWeek;
  TDaysOfWeek Weekend;
  Weekend << dwSat <<dwSun;
  if (Weekend.Contains(dwMon))
    ShowMessage(“This is a long weekend”);
  else
    ShowMessage(“Normal weekend”);
}

➤ Listing 10

March 1997 The Delphi Magazine 15



EDBEngineErrors, EDatabaseErrors
and any other exception. The last
catch statement also shows how to
trap absolutely anything that may
have been thrown.

Notice that I have chosen to use
the C RTL sprintf() function in-
stead of Format() in one handler.
Also, three C++ RTL functions are
being used to extract information
about the source location of the
exception and two C macros are
used to identify the current line
number and source file. This is
something many Delphi users have
wanted to be able to do, but have
been unable to due to the lack of
such information being generated
by Delphi. Since the three func-
tions are defined in a header not
automatically included, we need
the #include directive near the top
of the file.

The help for two of these sym-
bols states that the -xp+ compiler
option must be used for them to
work. This causes appropriate in-
formation to be generated by the
compiler for the source code lines.

This means we must either add a
#pragma option -xp+ to each of our
source files, or modify the make-
file. This can be done by choosing
View | Project Makefile and locat-
ing the compiler flags (any line be-
ginning with CFLAG) and adding the
new option into the list. Unfortu-
nately, these functions only appear
to offer useful information if the
exception was not caused by a VCL
exception object. This is probably
due to the VCL being written in
Pascal and not having the relevant
information to offer.

Resource Protection
The joyful try..finally construct
is unfortunately not present in C++
Builder. Yes, you read correctly:
it’s not there. So that begs the ques-
tion: how do you ensure certain
bits of code get executed whether
exceptions happen or not? Well,
the answer is to take up the C++
approach to the problem. In C++,
any local stack-based objects are
guaranteed to be destroyed when
the routine is exited. This is also
true if an exception happens, caus-
ing the object to be tidied up and
removed from the stack.

So for all those mouse cursor
changes, calls to DisableControls()
and EnableControls(), memory al-
locations and any other “resource
allocation” statement pairs, we
need to write a new class. The class
constructor can do the allocation
and the destructor can de-allocate.
I can foresee many people imple-
menting much the same resource
protection, or caretaker, classes in
much the same way. An example of
such a class is shown in Listing 14,

written with inline functions (in
other words the implementation of
the methods can be found in the
declaration of the class).

Template classes will almost cer-
tainly aid code re-usability here,
but that’s another story.

Run-Time Type
Checking: Is And As
In Delphi, you often typecast ob-
jects with the is and as keywords.
These take advantage of RTTI and

void __fastcall TForm1::Button1Click(TObject *Sender)
{
  TPoint Points[3] = {{1, 1}, {100, 1}, {50, 100}};
  TPoint BigPoints[6] = {{1, 200}, {100, 200},
    {50, 300}, {151, 200}, {250, 200}, {200, 300}};
  Canvas->Polygon(EXISTINGARRAY(Points));
  Canvas->Polygon(SLICE(BigPoints, 3));
  Database1->ApplyUpdates(OPENARRAY(TDBDataSet *, (Table1, Table2)));
  Table1->FindNearest(OPENARRAY(TVarRec, (Edit1->Text)));
  Caption = Format(“%s (%d)”, OPENARRAY(TVarRec, (“Error”, 10)));
  Button1->Caption = Format(“%s (%d)”, ARRAYOFCONST((“Error”, 20)));
}

➤ Listing 12

procedure TForm1.Button1Click(Sender: TObject);
const
  Points: array[1..3] of TPoint =
    ((X: 1; Y: 1), (X: 100; Y: 1), (X: 50; Y: 100));
  BigPoints: array[1..6] of TPoint =
    ((X: 1; Y: 200), (X: 100; Y: 200), (X: 50; Y: 300),
     (X: 151; Y: 200), (X: 250; Y: 200), (X: 200; Y: 300));
begin
  Canvas.Polygon(Points);
  Canvas.Polygon(Slice(BigPoints, 3));
  Database1.ApplyUpdates([Table1, Table2]);
  Table1.FindNearest([Edit1.Text]);
  Caption := Format(’%s (%d)’, [’Error’, 10]);
  Button1.Caption := Format(’%s (%d)’, [’Error’, 20]);
end;

➤ Listing 11

#include <except.h>
...
try
{
  //Stuff that might generate an exception
  Table2->FindNearest(ARRAYOFCONST((Edit1->Text)));
  StrToInt(“Hello”);
  throw 1;
}
catch (EDBEngineError &E)
{
  ShowMessage(“Caught an EDBEngineError”);
  throw Exception(
    “On receipt of one exception, this raises a different one”);
}
catch (EDatabaseError &E)
{
  ShowMessage(Format(“%s: %s”, ARRAYOFCONST((E.ClassName(), E.Message))));
}
catch (Exception &E)
{
  ShowMessage(“I can catch all other VCL exceptions”);
  throw; //re-raise same exception, like raise in Delphi except block
}
catch (...)
{
  //This catches all other things that get thrown
  char msg[300], format[100];
  strcpy(format, “Exception %s thrown in %s at line”);
  strcat(format, “ %d and caught in %s at line %d”);
  sprintf(msg, format,
    __ThrowExceptionName(), __ThrowFileName(),
    __ThrowLineNumber(), __FILE__, __LINE__);
  ShowMessage(msg);
}

➤ Listing 13

16 The Delphi Magazine Issue 19



so will ensure correct results. This
is the advantage they have over
standard compile time type check-
ing, although because they execute
code at run-time, they are slower
than compile-time type checking.
Listing 15 shows two possibilities
for toggling the Checked property to
a menu item in its event handler.

There are several problems with
translating these into C++. Firstly,
C++ does not have direct equiva-
lents of is and as so we need to use
a different approach. The second
problem is that C++ has no equiva-
lent of the with clause. Lastly, the
available dynamic typecast opera-
tor does not raise an EInvalidCast
exception if the intended typecast
is bad, instead it returns 0 (False
in C++). The C++ construct
dynamic_cast acts as a combination
of both Delphi operators.

Some possible ways of express-
ing Listing 15 in C++ appear in
Listing 16. You can see that com-
pile time typecasting can be done
with brackets, much like in Delphi,
or with static_cast.

Variant Variables
C++ has no direct support for
Variant variables and so yet
another class is used to implement
the required functionality. Since
OLE Automation is a very common
use of variants, Listing 17 has some
code to automate Microsoft Word.
Notice that different methods are
used to get and set properties
(OlePropertyGet and OleProp-
ertySet) as well as execute a
method of the OLE server you are
linked to (OleProcedure). Indeed
Variants also have a method called
CreateObject, possibly negating the
need for the Delphi CreateOle-
Object equivalent.

So What About Delphi?
Having read all about the wonders
of C++ Builder: being able to com-
pile C++ and Delphi Pascal files and
looking the spitting image of
Delphi, you may wonder what fu-
ture Delphi may have. If C++
Builder does everything that
Delphi does, why would people
buy Delphi any more?

Fortunately, there are a number
of factors which assure Delphi’s

class TScreenCursorChanger
{
private:
  TCursor FCursor;
public:
  TScreenCursorChanger(TCursor Cursor) // constructor
  {
    FCursor = Screen->Cursor;
    Screen->Cursor = Cursor;
  }
  ~TScreenCursorChanger() // destructor
  {
    Screen->Cursor = FCursor;
  }
};
void __fastcall TForm1::Button2Click(TObject *Sender)
{
  TScreenCursorChanger Obj(crHourGlass); //Local stack-based object
  //Do stuff that might cause an exception
  //Who cares if it does? The object above will still get destroyed
  //So the cursor will be changed back
  Sleep(1000);
  StrToInt(“Hello”); //This will generate an exception
}

➤ Listing 14

{ first }
if Sender is TMenuItem then
  with TMenuItem(Sender) do
    Checked = not Checked;

{ second }
try
  with (Sender as TMenuItem) do
    Checked := not Checked
except
  on EInvalidCast do { nothing }
end;

➤ Listing 15

\\ first option
if (dynamic_cast<TMenuItem *>(Sender))
  ((TMenuItem *)Sender)-Checked = !((TMenuItem *)Sender)->Checked;

\\ second option
if (dynamic_cast<TMenuItem *>(Sender))
{
  TMenuItem *Tmp = ((TMenuItem *)Sender);
  Tmp->Checked = !Tmp->Checked;
}

\\ third option
if (dynamic_cast<TMenuItem *>(Sender))
{
  TMenuItem *Tmp = static_cast<TMenuItem *>(Sender);
  Tmp->Checked = !Tmp->Checked;
}

\\ fourth option
if (InheritsFrom(Sender->ClassType(), __classid(TMenuItem)))
{
  TMenuItem *Tmp = ((TMenuItem *)Sender);
  Tmp->Checked = !Tmp->Checked;
}

➤ Listing 16

Variant MSWord;
MSWord = CreateOleObject(“Word.Basic”);
MSWord.OleProcedure(“AppShow”);
MSWord.OleProcedure(“FileNew”);
MSWord.OleProcedure(“Insert”, Edit1->Text + “\n”);
MSWord.OleProcedure(“EditSelectAll”);
Variant CurValues = MSWord.OlePropertyGet(“CurValues”);
Variant SumInfo = CurValues.OlePropertyGet(“FileSummaryInfo”);

//Work out how many characters we just typed in
MSWord.OleProcedure(“Insert”, “ I Just inserted ”);
MSWord.OleProcedure(“Insert”, SumInfo.OlePropertyGet(“NumChars”));
MSWord.OleProcedure(“Insert”, “ characters”);
ShowMessage(“Press Enter to terminate link to MS Word”);
MSWord = Unassigned;

➤ Listing 17

March 1997 The Delphi Magazine 17



future, at least in the face of C++
Builder.

The first is that Delphi will
always be a few steps ahead. We
expect Delphi 3 to be released
shortly after C++ Builder 1. Delphi
3 brings along packages and Active-
Forms, to name but two of the host
of new features. C++ Builder is
based around the Delphi 2 VCL,
with one or two items from Delphi
3 (for example the Input Method
Editor support for international
applications).

Secondly, despite C++ Builder
being able to compile Pascal units,
it is inherently a C++ product. As a
result, C++ Builder project files are
always C++, and C++ Builder re-
fuses to manufacture Pascal event
handlers (see Figure 3).

Also, being a C++ product it is
rather slower at compiling a pro-
ject than Delphi. It is also rather
more disk-hungry whilst doing so.

[And the Editor couldn’t resist
adding this comment:
Finally, there’s the language itself.
C++ strikes fear into the hearts of all
but the most masochistic novice pro-
grammers, whereas Pascal is more
approachable and considerably eas-
ier to learn – an attribute it shares
with Basic, but with arguably a better
inherent structure and in the (Delphi
Object) Pascal dialect there’s true
object orientation which is a sub-
stantial benefit over (Visual) Basic.]

Conclusions
This is a fine product which
attempts to lift C++ development
from the realms of the propeller
head more into the mass market.
Since it is based around the PME
(Propery, Method and Event) com-
ponent model of its multi-award-
winning stable-mate Delphi, it
should be a resounding success in
its market sector.

It is most cunning how Borland
have been able to migrate almost

Given a project called PROJECT1.MAK where its only form unit is called UNIT1.CPP, the
following files will be generated. The first six will appear when the project is first
saved, the others each time the project is compiled.

PROJECT1.MAK Project options file, as seen by selecting View | Project
Makefile containing all the options from the project options
dialog’s Compiler, Linker and Directories/Conditionals
pages. This stands for MAKefile.

PROJECT1.CPP Project source file, as seen by selecting View | Project Source.

UNIT1.CPP Source module which implements a form’s functionality.

UNIT1.H Header file which defines a form class.

UNIT1.DFM Binary file describing the form, all its components and their
properties.

PROJECT1.RES A resource file containing the project’s icon. If no icon is specified
in the project option dialog’s Application page, a default one is
supplied. This file needs to be archived if you set up a specific icon.

PROJECT1.EXE or
PROJECT1.DLL

The generated executable.

UNIT1.OBJ The compiled form of UNIT1.CPP. OBJ stands for OBJect file.

If Options | Project | Linker | Use incremental linker is enabled when
the project is compiled (as it is by default), the following files are manufactured to
support incremental linking:

PROJECT1.ILC Incremental linker storage buffer.

PROJECT1.ILD Incremental linker storage buffer.

PROJECT1.ILF Incremental linker storage buffer for functions.

PROJECT1.ILS Incremental linker storage buffer for symbols.

If the Options | Environment | Editor display | Create backup file
option has been selected, the following additional files will be generated each
subsequent time the project is saved:

PROJECT1.~MA Backup of project makefile.

PROJECT1.~CP Backup of project source file.

UNIT1.~DF Backup of binary form file.

UNIT1.~CP Backup of module source file.

UNIT1.~H Backup of module source header file.

If Options | Environment | Preferences | Desktop has been selected, the
following file will be generated when the project is closed:

PROJECT1.DSK An INI file with a different extension containing all the information
required when the project is re-opened for Delphi to restore the
desktop just as it was when closed.

If Options | Project | Compiler | Debug information is enabled the
following file will contain all the debugger symbol information, otherwise this file will
contain very little. It is principally for use by the environment but can also be used by
Turbo Debugger (TD32.EXE).

PROJECT1.TDS Turbo Debugger symbol file.

If the Map file option from the Linker page of the Project options dialog is set
to anything other than Off, the following file is generated.

PROJECT1.MAP Text file containing varying details of information of use when
performing low-level debugging tasks.

If the command-line tool CONVERT.EXE (found in the BIN subdirectory) has been used
(it converts binary form files to text files and text files back to binary forms), the
following file will be present:

UNIT1.TXT Text file containing description of form and all components on
form, including values of all non-default properties.

If there was more than one form in the project, there would be files similar to the
UNIT1.* files generated for each additional form. 

The primary files to be concerned with are the .MAK, .CPP, .H and .DFM files, although
the .RES file will probably also need to be saved.

➤ Table 1: C++ Builder Project Files

➤ Figure 3

18 The Delphi Magazine Issue 19



everything from the Delphi world
into direct C++ equivalents, by
using combinations of classes,
templates, macros and other
pre-processor directives.

In fact, I heard someone mention
that during the latter stages of

Given a Delphi 2 project called PROJECT1.DPR where its only unit is called UNIT1.PAS,
the following files will be generated (Delphi 3 throws a couple more in for good
measure). The first four will appear when the project is first saved, the fifth one should
only be seen when the project is closed, the others each time the project is compiled.

PROJECT1.DPR Project source file, as seen by selecting View | Project Source.

UNIT1.PAS Source module which represents a form.

UNIT1.DFM Binary file describing the form and all its components. Stands for
Delphi ForM.

PROJECT1.RES A resource file containing the project’s icon. If no icon is specified
in the project option dialog’s Application page, a default one is
supplied. This file needs to be archived if you set up a specific icon.

PROJECT1.DOF (Delphi 1 uses the .OPT extension) .INI file with different extension
containing all the options from the project options dialog’s
Compiler, Linker and Directories/Conditionals pages as
well as anything specified in Run | Parameters. If you change
any of these settings, this file should be kept. Stands for Delphi
Options File.

PROJECT1.EXE or
PROJECT1.DLL

The generated executable.

UNIT1.DCU The compiled form of UNIT1.PAS. DCU stands for Delphi Compiled
Unit.

If the Delphi 2 option Tools | Options | Display | Create backup file or
the Delphi 1 option Options | Environment | Editor display | Create
backup file has been selected, the following additional files will be generated each
time the project is saved:

PROJECT1.~DP Backup of project source file.

UNIT1.~DF Backup of binary form file.

UNIT1.~PA Backup of module source unit.

If the Desktop option has been selected from the Preferences page of Delphi 1’s
Options | Environment or Delphi 2’s Tools | Options dialog, the following
additional files will be generated when the project is closed (the latter only if
Desktop and symbols is selected in the same options page):

PROJECT1.DSK An .INI file with a different extension containing all the
information required so that when the project is re-opened Delphi
can restore the desktop just as it was when closed.

PROJECT1.DSM Symbol table for your application. If you load your project, Delphi
will not need to compile your project to enable the Object Browser
etc.

If the Map file option from the Linker page of the project options dialog is set to
anything other than Off, the following file is generated.

PROJECT1.MAP Text file containing varying details of information of use when
performing low-level debugging tasks.

If the command-line tool CONVERT.EXE (found in the DELPHI\BIN directory) has been
used (it converts binary form files to text files and text files back to binary forms), the
following file will be present.

UNIT1.TXT Text file containing description of form and all components on
form, including values of all non-default properties.

If there was more than one form in the project, there would be files similar to the
UNIT1.* files generated for each additional form.

The primary files to be concerned with are the .DPR, .PAS and .DFM files, although
others that may need to be saved are the .RES and .DOF/.OPT files.

➤ Table 2: Delphi Project Files

Delphi’s original development, C++
Builder was already being planned.
The code name for Delphi was
Delphi. The code name for this new
C++ product was originally Sci-Fi,
suggesting its ahead of its time and
out of this world nature.

So now we can see Delphi
and Sci-Fi side by side (note
for the English: remember
that the people who wrote
these products pronounce
the second syllable of Delphi
the same as the second
syllable of Sci-Fi).

I believe people will only
move to C++ Builder from
Delphi if they have a back-
ground of C++, or because
they think it would benefit
them to get in with the C++
crowd. If so, then fine.

The major market for C++
Builder is likely to be those
developers who would not
consider a language change
from C++ to Pascal, or who
have a substantial base of
legacy C++ code.

I wouldn’t recommend you
move exclusively to C++
Builder if you are a Delphi de-
veloper with no C++ experi-
ence, hoping that C++ Builder
will give you everything that
Delphi does, plus more.
Although this is very nearly
true in strict terms, since C++
Builder compiles C++ and
Delphi Pascal source files, the
length of C++ Builder’s initial
compile times might make
you regret the decision.
Developers who have used
C++ compilers certainly
appreciate Delphi’s blinding
compilation cycles. For exist-
ing Delphi developers, how-
ever, C++ Builder may well
prove to be a useful adjunct,
with the side benefit of allow-
ing you to gain C++ experience
in what is currently the least
painful way.

Brian Long is a UK-based
freelance Delphi consultant
and trainer, although he now
also has Borland C++ Builder
on his CV. He is available for
bookings and can be
contacted by email at
blong@compuserve.com

Copyright ©1997 Brian Long
All rights reserved

March 1997 The Delphi Magazine 19


	First Impressions
	Hardware Requirements
	Human Requirements
	Project Overview
	User Interface Designing
	Object Inspector
	Event Handlers
	General Language Differences
	Variables And Objects
	If Statements
	Case Statements
	String Operations
	Set Operations
	Creating A New Set Type
	Open Arrays
	Exception Handling
	Resource Protection }
	Run-Time Type Checking: Is And As
	Variant Variables
	So What About Delphi?
	Conclusions

